SelaVip

Manual

Philipp Amstutz, Mathias Vogt
Deutsches Elektronen-Synchrotron DESY

2022-03-26
version 0.2.0

Contents

(1 Introductionl

2 Installation

[3 Command Language)
3.1 Commentsl e
[3.2 Data types|.
I;i';i y;!ll‘!‘!tzlg::il --

4 Usage
[4.1 Imitializing PSDs|
4.2 Propagating PSDs|o
4.3 Generating Output|

[> Application to Beam Dynamics|

6 Referencel
[average — Function average from discrete values
[centroid — Calculate PSD centroidl. oL
fcharge — Charge (or Weight) of a PSD|
[chdir — Change working directoryl
[chicanecoef — Taylor coefficients ot C-shape chicane|
[defined — Check whether symbol is defined|
[do — Execute commands multiple times| 00000
leval — Evaluate commands in a string| L
[format — Format numbers into a string|
[for — Loop over array|
[cetcwd — Name of current working directory|
[gcetenv — Read environment variable[. 000000

[f — Conditional executionl

[ntegral — Calculate expectation values|
[inspace — Create array of equally spaced values|

[map_analytic — Map defined by analytic expressions| 17
[map_cavity — Cavity map| 18
[map_chicanec — C-shape Chicane map| 18
[map_compose — Compose multiple maps| 18
[map_csr — CSR kick map|. 19
[map_driftl — Linear drift map|o oo 19
[map_dritftpoly — Polynomial drift map|. 20
[map_driftsine — Sinusoidal drift map| o000 20
[map_hyperbolic — Hyperbolicmap|. 21
[map_identity — Identity map| 21
[map_kickl — Linear kick map|. o000 22
[map_kickpoly — Polynomial kick map| 0. 22
[map_kicksine — Sinusoidal kick map| 0000000 23
[map_poissonld — Solve 1D Poisson’s equation| 23
[map_poisson — Poisson-type collective kick map| 24
[map_rotate — Rotation map| oo o 24
[map_spacecharge — Spacecharge kick map|. 25
maximum — Maximum ot a PSDI. 25
[mkdir — Creates new directory|. L 25
[modity — Modity a PSD|o 26
multiply — Multiply PSD with a constant|. 26
moise = Addmnoise to PSDI 27
[normalize — Normalize integral of PSD| 28
[plot — Save a grayscale image ot a PSD|o 0000 28
[print — Print objects| 29
[propagate — Propagate a PSD according toamap| 30
[psd_analytic — Initialize a PSD from analytic expression|. 31
[psd_ensemble — initialize a PSD trom an particle ensemble| 32
[psd_gauss — initialize a Gaussian PSD|.o 0000000 33
[psd_rectangle — initialize a rectangular PSD| o000 34
[psd_test — initialize a test PSD| oo oo 35
lsave — Save a PSD toafilel.o oo 35
show — Visualize PSDI 36
[strcat — Concatenate strings| 36
[stremp — description| 37
[strtod — Convert string to number|. Lo 37
transterdd — Propagate a 4D transfer matrix|{ 38
variance — Calculate covariance matrixl 39
who — [ist all defined variables| 0L 40
write_ensemble — Write ensemble to filelo 0000000 40
(write_grid — Write grid to file| oo 41
[write_localmoments — Write moments of marginal distribution to file. 41
[write_projection — Write projection to file|. 42

This documentation is licensed under the Creative Commons Attribution-ShareAlike 4.0 Inter-
national License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/.

Copyright 2020-2022 Philipp Amstutz (DESY)

1 Introduction

SelaVip is a semi-Lagrangian Vlasov simulation code in 1 degree of freedom, which is espe-
cially suited for simulating sparse phase-space densities (PSDs). Its primary intended area of
application is the investigation of collective effects in the longitudinal phase-space of electron
bunches in Free-Electron Lasers (FELs). Efficient treatment of sparse PSDs is achieved by
tree-based domain decomposition, which allows to sample a PSD only in populated areas of
the phase-space. To this end, SelaVip utilizes the 1libselav library which implements arbitrary
dimensional PSD-Trees.

2 Installation

In order to compile SelaV;p the following tools and libraries are required
e GNU make
e libmatheval
o fftw
e X11 (optional)

All of them should be available in the repositories of any major Linux distribution. The
source code of SelaVip is available as a tar-ball from www.desy.de/~amstutz/selav/ . After
downloading, decompress the archive and run make in the resulting directory:

tar xzf selav-0.0.2.tar.gz
cd selav-0.0.2/
make

Then, optionally, move or link the binary selavid to a directory in your PATH.

3 Command Language

The input format for selavid is a simple interpreted language with a python-influenced, C-
style syntax. It supports floating point arithmetic, variable assignment and macros. Every
command line ends needs to end with a semi-colon (;). White spaces (i.e. tabs, carriage
returns, spaces, etc.) are ignored. selavid expects input on standard input. For testing
purposes the interpreter can be used interactively. To run commands stored in a file (e.g.
example.inp) use the input redirection of your shell to feed them to SelaVip:

selavld < example.inp

3.1 Comments

Both, C and C++ style comments are supported. Anything between a pair of /* and */ is
ignored, as well as anything after a // until the end of the line.

3.2 Data types

SelaVip manages objects of four data types. FLT for floating point numeric values, STR for
strings, PSD for tree-PSDs, and MAP for maps.

Numeric values can be specified in the usual decimal or exponential notation, e.g. 42, 13.37e2,
or 5.0e-3. Arrays of FLTs are specifed by enclosing them in brackets, e.g. [1, 2e3, 42].

Strings are specified by enclosing them in either double quotation marks (") or a pair of curly
braces ({ , }), where the latter syntax is intended for the definition of macros, see
PSD-types and MAP-types occur only as return values of functions and can not be specified
directly.

3.3 Variables

Variables can be assigned using the = operator. A valid variable name is any combination of
the letters in the english alphabet (upper and lower case), the numbers 0-9, and an underscore

(-).
The command lists all currently defined variables.

3.4 Arithmetic

Elementary arithmetic expressions are supported in infix notation using the standard operators
+,-, /, and *. Trigonometric functions sin, cos, and tan take their arguments in radians.
Parentheses can be used for grouping expressions. Arithmetic expressions may appear anywhere
a numeric value is expected. The constant pi is defined.

my_2pi = 2%pi;
a = 42;
print(sin(my_2pi * (a+1.2)));

>>> 9.5106651629515031e-01

3.5 Keyword Arguments

Some functions take optional arguments in the form of keywords; for example

psd = psd_gauss(sig_qg=0.5, sig_p=0.5);

Keywords are always optional; if a keyword is not specified it is assigned a default value. See
Section [6] for a list of all functions with their keyword arguments and their default values.

3.6 Control Flow

Conditiontioal execution is supported via if (else) statements. The condition is supplied in
the form of a FLT object; values > 0 are interpreted as “true” and values < 0 as “false”.

if(2 - 4) {

print("Two is strictly greater than four.");
} else {

print("Four is strictly greater than two.");

};

>>> Four is strictly greater than two.

The do statement provides a simple looping construct. It unconditionally executes a block of
commands a given number of times.

n=0; do(3) {
print(n);
n=n+1;

};

>>> 0.0000000000000000e+00
>>> 1.0000000000000000e+00
>>> 2.0000000000000000e+00

4 Usage

This section will give a quick introduction on how to use SelaVip.

4.1 Initializing PSDs

Typically, the first step in any SelaVip run is to initialize a phase-space density. There are
a number of functions available (see ?7), which produce either analytically defined PSDs or
generate them from particle distributions. The function [psd_gauss| for instance, produces a
bivariate Gaussian distribution.

psd = psd_gaussQ) ;

It returns a PSD object that needs to be assigned to a variable (here psd), so that it can be
referenced later on.

Especially when setting up a simulation for the first time, it can be helpful to visualize the
phase-space densities at different steps of the simulation. The command starts an X
window that lets the user explore the PSD interactively. See the entry in the Reference section
for a complete list of its capabilities. If the file keword is supplied to [show] instead of starting
an interactive window it writes an image in PPM format to the specified file. The PPM format
is a straight-forward ASCII image format and the only format the author saw himself able
to implement without the use of an external library. PPM images can be easily converted to
more common formats with image manipulation programs such as the ImageMagick suite or

the GIMP.

psd = psd_gauss(correlation=0.95);
show(psd,file="gauss.ppmn");

gauss.ppm

All functions that initialize a PSD allow the keywords limits, nexp, depth, weight. With
limits the size of the simulation window is specified. This need to be larger that the support
of the phase-space density.

psd = psd_gauss(correlation=0.95,
limits=[-1,-1,1,1]1);
show(psd,file="limits_a.ppm");

psd = psd_gauss(correlation=0.95,

limits=[-2,-5,2,4]); / . I /
1.002400) / [1 .coee® L.ovessh o.00mag

show(psd,file="1limits_b.ppm"); e - :
limits_a.ppm limits_b.ppm

“3.002+00 ey

The depth of the tree structure used for the domain decomposition of the PSD can be selected
with the depth keyword.

psd = psd_gauss(correlation=0.95,depth=4);
show(psd,file="depth_4.ppm",cells=1);

psd = psd_gauss(correlation=0.95,depth=6) ;
show(psd,file="depth_6.ppm",cells=1);

N
2 0085008402002 Bscne-05 002

depth_4.ppm depth_6.ppm

Only on the smallest cells, the so-called leafs, values of the PSD is stored in memory. The
number of sample points per leaf is controlled by the keyword nexp, which is the log, of the
number of points per dimension. For example, nexp= 3 means 23 = 8 points per dimension,
resulting in a total of 64 sample points per leaf.

psd = psd_gauss(correlation=0.95,
depth=2,nexp=3) ;
show(psd,file="nexp_3.ppm",cells=1);

psd = psd_gauss(correlation=0.95,
depth=2,nexp=5) ;
show(psd,file="nexp_5.ppm",cells=1);

nexp_5.ppm

The total resolution of the PSD is therefore given by 2~ ("¢#r+derth) relative to the size of the sim-
ulation window. Hence, to get higher resolution either nexp or depth can be increased. Larger
values for depth lead to a larger tree structure and therefore to more computational overhead.
Choosing depth too low will lead to the tree covering more phase-space than necessary, which
is memory efficient. Hence, depth should be chosen as small as possible but large enough so
that the support of the PSD is well approximated by the tree. After depth is fixed, nexp can
increased to achieve the required final resolution.

PSDs can be created on different topologies (R?, S x R, R! x S, and S?) using the keyword
topology.

psd = psd_gauss(correlation=0.95, - S SIS
topology=1) ; '/ /7
show(psd,file="topo_1.ppm", ‘ 7’7777/ 7/
limits=[-5,-5,5,5] ,cells=1); g J S S 7 g S S S
psd = psd_gauss(correlation=0.95, '’/ 7777/
topology=3); /ﬁ\ 7/ S 3 vy
show(psd,file="topo_3.ppm", o JA Lo S Ak S 4
limits=[-5,-5,5,5],cells=1); topo_1.ppm topo_3.ppm

Multiple options are available for the interpolation method used to evaluate the phase-space
density. They can be selected via the interpolation keyword. Currently implemented meth-
ods are nearest-neighbor, bilinear and bicubic interpolation.

g
5.008-01

psd = psd_gauss(correlation=0.95,
depth=2,nexp=3,
interpolation=0) ;

show(psd,file="nearest.ppm") ;

psd = psd_gauss(correlation=0.95,
depth=2,nexp=3,
interpolation=1);

show(psd,file="linear.ppm");

psd = psd_gauss(correlation=0.95,
depth=2,nexp=3,
interpolation=2);

show(psd,file="cubic.ppm") ;

1 008-(5.09654. 0082008000842 }N{oﬁ Looe=te
linear.ppm

nearest.ppm

4.2 Propagating PSDs

After a PSD is initialized, the next step is to execute one or more propagation steps. Given an
initial PSD ¥, and a map f: R? — R2, a propagation step will return a new PSD ¥, given by

W) = Wo(f71(1)). (1)

In short, if f is the solution of the single particle equations of motion, then Wo(f~1(-)) is the
solution of the Vlasov equation, i.e. the equation of motion of the phase space density with the
initial condtion given by W,.

SelaVip handles maps in the form of MAP type objects. There a number of functions returning
MAP type objects, see for a complete list. For example map_kickpoly() produces
a kick map with polynomial kick function.

f = map_kickpoly([0,0,10]);

A propagation step is executed by calling the funtion propagate] It takes the initial PSD and
the map as arguments and returns the new PSD. A call is the direct equivalent of
Equation [I}

i

psdO = psd_gauss(correlation=0.95,
depth=5) ;

f = map_kickpoly([0,0,10.]);

psdl = propagate(psdo0,f);

show(psd0,file="psd0.ppm",cells=1);

show(psdl,file="psdl.ppm",cells=1);

8.002--6,00e54.00:

psdO.pp psdl.ppm

Note that the outer rectangle of the new tree has automatically adapted so that it can fit the
support of the new PSD. Further, the recursion depth has also been increased automatically

7

to keep the sampling resolution constant. This behaviour can be controlled with the box and
center keywords. Setting them to "KEEP" will keep the old box dimensions.

S st
6:008701 ~008=0:

psd0 = psd_gauss(correlation=0.95);
f = map_kickpoly([0,0,2]);
psdl = propagate(psdO,f,box="KEEP", T
center="KEEP") ; EidO'PPm psd1.ppm
psd2 = propagate(psd0,f,box="KEEP"); |
show(psd0,file="psd0.ppm");
show(psdl,file="psdl.ppm");
show(psd2,file="psd2.ppm") ;

oooooo

777777

psd2.ppm

Similarly, the resolution of the new PSD can be controlled with the keywords depth and nexp.
Typically, multiple maps will need to be applied to an initial PSD before the final result
is attained. Of course, this can be achieved by applying the maps successively by calling

multiple times.

psd = psd_gauss(correlation=0.1);
ml = map_kickpoly([0,0,3]);

m2 = map_driftpoly([0,0,3]);

m3 = map_kickpoly([0,0,-0.1]);
psd = propagate(psd,ml);

psd = propagate(psd,m2);
psd = propagate(psd,m3); e s et £t B et
show(psd,file="psd.ppm") ; psd.ppm

Executing a simulation steps is a computationally intensive operation. But oftentimes some
of the intermediate PSDs are of no particular interest. In that case it is advisable to compose
multiple maps into one MAP object. This allows to do the same calculation with only a single

call

-
psd = psd_gauss(correlation=0.1);

ml = map_kickpoly([0,0,3]); \
m2 = map_driftpoly([0,0,3]); \
m3 = map_kickpoly([0,0,-0.1]); — \

M = map_compose(ml,m2,m3) ;

psd = propagate(psd,M); /L
show(psd,file="psd.ppm"); A

psd.ppm

An especially interesting type of maps are collective maps, such as for instance
and map_spacechargel These map functions take a PSD as one of there arguments and return

a map calculated based on that PSD. It is to be noted that in SelaVip once a MAP object is
generated in this way it remains independent on the PSD it was calculated from. The PSD
object can be modified or deleted afterwards, without affecting the previously calculated map.

psd = psd_gaussQ);

m = map_poisson(psd, "-2*(step(q)-0.5)",
file="field.dat",npad=2);

psd = propagate(psd,m); - y

show(psd,file="psd.ppn"); N

field.png

4.3 Generating Output

After executing all desired propagation steps, information about the resulting PSD can be
gathered and output for further evaluation outside of SelaVip.

Generally all output that would be written to the standard output can be redirected using the
> and >> operators. They redirect the output of a preceding command block to a specified file.
Both operators create the file if it does not exist. If the file already exists, the > will delete its
content, while the >> operator will append to it.

{
print ("This text will be written into a file.");
print("More text.");
> "output.dat" ;
} n p d "

Further, there are a number of functions to generate output from PSD objects. The function

write_projection|calculates the projection of the PSD along an axis and writes the result to
a file.

psd = psd_gauss(correlation=0.1); -
ml = map_kickpoly([0,0,3]); . ’ e \
m2 = map_driftpoly([0,0,3]); - | \

m3 = map_kickpoly([0,0,-0.11); . | \
M = map_compose (ml,m2,m3); .

psd = propagate(psd,M); % AN S
show(psd,file="psd.ppm") ; | A —

write_projection(psd,"projection.dat",2);

projection.png psd.ppm

In conjunction with the it is for instance possible to calculate local, unnormalized
expected values of arbitrary functions.

By I

psd = psd_gauss(Q);

M = map_kickpoly([0,3]);

psd = propagate(psd,M);
write_projection(psd,"expect_1.dat",2); y \
modify(psd,"psi*p"); N .

show (psd,file="psd.ppm"); o N/ ~_
write_projeCtion(de’"expeCt—p-dat",2); oFReRAer o e e o L T AT ——
projection.png psd.ppm

psdO = psd_gauss(correlation=0.95);

m = map_kickpoly([0,0,3]);

psdl = propagate(psd0, m);

modify(psdl, "psi*(1+0.8*sin(2*pi*5*xq))");
show(psdl, file="psdl.ppm");
write_ensemble(psdl, "ensemble.dat", n=1le4);

02008400

ensemble.png psdl.ppm

5 Application to Beam Dynamics

TODO

10

6 Reference

average — Function average from discrete values
Synopsis
FLT average(FLT a, FLT b, FLT[n] x, FLT[n] y);

Description

Calculates the average function value
b
[f(x)dz
b—a
where f(z) is the linear interpolant with f(z;) = v;.
Return Value

Average function value.

centroid — Calculate PSD centroid
Synopsis
FLT[2] centroid(PSD V);

Description

Calculate the centroid [,, ¥(z) zdz.

Return Value

Array of size 2 containing the centroid of .

Example

psi = psd_test(Q);
centroid(psi);

>>> [-4.844542e-02, -3.541503e-02]

charge — Charge (or Weight) of a PSD
Synopsis
FLT charge(PSD V);

Description

14

PSD objects carry an additional value, the “weight”. It takes the function in beam dynamics
calculation it takes the role of the bunch charge in Coulomb.

Return Value

Returns the charge (“weight”) associated with W.

11

chdir — Change working directory
Synopsis
example(STR dir);

Description

Changes working directory to dir, which can be an absolute or relative path name.

chicanecoef — Taylor coefficients of C-shape chicane
Synopsis
FLT[n] chicanecoef(FLT n, FLT ¢, FLT ig, FLT Ip);

Description

Calculates the first n Taylor coefficients of the drift map of a symmetric C-shape chicane with
bending angle ¢ (in rad), dipole length [z, and dipole distance [(both in meter).

Return Value

Array of size n containing the chicane drift coefficients.

defined — Check whether symbol is defined
Synopsis
FLT example(symbol);

Description

Check whether symbol is already defined.

Return Value

Returns 1 if symbol is defined, and 0 otherwise.

Example

a=2;
defined(a);
defined(b);

>>> 1.0000000000000000e+00
>>> 0.0000000000000000e+00

12

do — Execute commands multiple times
Synopsis
do(FLT n) { commands };

Description

Executes commands n times.

Example

i=1;

do(4) {
i=i*2;
print(i);

+;

>>> 2.0000000000000000e+00
>>> 4.0000000000000000e+00
>>> 8.0000000000000000e+00
>>> 1.6000000000000000e+01

eval — Evaluate commands in a string
Synopsis
eval(STR string);

Description

Evaluate the commands in string.

Example

cnd = {
print ("Hello!");
a = 3;

s

eval(cmd) ;

print(a);

>>> Hello!
>>> 3.0000000000000000e+00

13

format — Format numbers into a string
Synopsis
format(STR format, FLT fo, ..., FLT f,);

Description

Formats numbers fy, ..., f, into a string according to the printf-style format format. Only
conversion specifiers that accept double arguments are allowed in format.

Example

a=1; b=32; c=0;
numbers = format("%03g -- %e -- %g",a,b,c);
print (numbers) ;

>>> 001 -- 3.200000e+01 -- O

for — Loop over array
Synopsis

for(symbol in array) { commands };

Description

Executes commands multiple times with symbol successively taking each value in array.

Example

a = [1,5,32,2];

for x in a {
print(al[2]* x);

}s;

>>> 3.2000000000000000e+01
>>> 1.6000000000000000e+02
>>> 1.0240000000000000e+03
>>> 6.4000000000000000e+01

14

getcwd — Name of current working directory
Synopsis
STR getewd();

Return Value

String containing the name of the current working directory.

Example

chdir ("/tmp");
getcwd () ;

>>> /tmp’

getenv — Read environment variable
Synopsis
STR getenv(STR name);

Description

Reads the environment variable name.

Return Value

String containing the value of the environment variable.

Example

getenv ("TERM") ;

>>> ’xterm’

15

if — Conditional execution
Synopsis
if(FLT x) { commands } [else { commandsy, } |;

Description

If x is larger than 0 executes commands. If x is smaller or equal 0 and the else clause is given
executes commandsy,.

Example

if(2) {
print("true");
} else {
print("false");
s

>>> true

include — Evaluate commands in a file
Synopsis
include(STR file);

Description

Reads and evaluates commands from file.

Example

// Content of file example.inp:

//

// a = 42;

// print("Hello!");
//
include("example.inp") ;
print(a);

>>> Hello!

>>> 4,2000000000000000e+01

16

integral — Calculate expectation values
Synopsis
FLT integral(PSD W[, STR f]);

Description

If f is given, calculate
/ W(2) f(2)dz, (3)
R2
otherwise calculate
[v (4)
R2
In the function string f, use q and p as the phase-space coordinates.

Return Value

Expectation value of 1, or f respectively.

Example

psi = psd_test();
integral (psi);
integral(psi,"qg*p");

>>> 4.0852578184938004e-01
>>> -1.5133745968341827e-02

linspace — Create array of equally spaced values
Synopsis
FLT linspace(FLT start, FLT end, FLT n);

Return Value

Array of size n containing equally spaced values between start (inclusive) and end (inclusive).

Example

linspace(0,1,5);

>>> [0.000000e+00, 2.500000e-01, 5.000000e-01, 7.500000e-01, 1.000000e+00]

17

load — Load a PSD from a file
Synopsis
PSD load(STR file);

Description

Load a PSD from a file file that has been created by the function.

Example

filename="psd.dat";

psdO0 = psd_test();

save (psd0,filename) ;

psdl = load(filename);
show(psdl,file="psdl.ppm");

map_analytic — Map defined by analytic expressions
Synopsis
MAP map_analytic(STR f,, STR f,);

Description

This function constructs the time-one map of the flow ¢: ¢,z — (f,(¢, 2), f,(t, 2)).

The string representation of f, and f, use the symbols t, q, and p to refer to the independent
variable ¢, and the phase-space coordinates (g, p) = z respectively.

No checks are conducted whether ¢ fulfills the flow properties, nor whether the resulting map
is symplectic. Specifying a flow for which ¢(t,-) o ¢(—t,-) = Id does not hold, can lead to
unexpected behaviour.

The expression is evaluated using library “GNU libmatheval”. See its documentation for a list
of all supported features. Due to technical issues with the “GNU libmatheval” library, this
function currently is not as computationally efficient as the others. Using it can slow down the
simulation.

Example

psd0 = psd_test();
m = map_analytic(
"g+t*0.5% (exp(-0.5*%p*p/0.172)-exp(0))",
llpll) ;
psdl = propagate(psd0,m,box="EQUAL");
show(psdl,file="psdl.ppm");

18

map_cavity — Cavity map
Synopsis
MAP map_cavity(keywords);

Description

Returns the map

@ ~ <p+k<q§— k<0>) ’

with
k() = A cos(2m f/cq+ ¢) mode =0
—A27 f/c sin(¢) mode = 1
Keywords
’ Keyword \ Type \ Default \ Unit \ Description ‘
freq FLT 10° | Hz Frequency f.
phase FLT 0 | rad | Phase ¢.
ampl FLT 106 | Vv Amplitude A.
mode FLT 0 Selects cavity model.

map_chicanec — C-shape Chicane map
Synopsis
MAP map_chicanec(keywords);

Description

Returns a kick-map corresponding to a C-shape chicane.

Keywords
’ Keyword ‘ Type ‘ Default ‘ Unit ‘ Description
alpha FLT 10 | rad | Bending angle.
1D FLT 0.5 | m Drift length.
1B FLT 0.5 | m Magnet length.
energy FLT 0] eV Beam energy.
mode FLT 0 Selects chicane model.

map_compose — Compose multiple maps
Synopsis
MAP map_compose(MAP f,, ..., MAP fy);

Description

Returns the map

Kofi=fao- o fo.

19

map_csr — CSR kick map

Synopsis

MAP map_csr(PSD V¥, keywords);

Description
TODO
Keywords
’ Keyword ‘ Type‘ Default | Unit Description
angle FLT 1| rad bending angle of the dipole
length FLT 1| m effective length of the dipole
energy FLT mec? | eV total particle energy
s FLT length | m position inside the dipole (arclength)
ds FLT length | m propagation length (“time step”)
fudge FLT 1 artificial factor to scale fields with
npad FLT 2 FFT padding factor
mode FLT 2 Select CSR model
filter FLT 0 Selects smoothing filter type
filterwidth FLT 0.1 | fayquist Width of the smoothing filter
large dist_cutoff | FLT 0 | Rpend/7? | Truncate CSR kernel for (s — s’) smaller than this value
transient FLT 1 0: no transient terms, 1: both terms, 2: first term only
file STR Write field to this file
debug STR Write details of field calculation to this file
verbose FLT 0 If true, print additional information

map_driftl — Linear drift map

Synopsis

MAP map_driftl(FLT [);

Description

Returns the map

Example

(i)~

()

m =

psd0 = psd_test();
map_driftl(1);
psdl = propagate(psdO,m,box="EQUAL") ;
show(psdl,file="psd0.ppm") ;

20

map_driftpoly — Polynomial drift map
Synopsis
MAP map_driftpoly(FLT[n] a);

Description

Returns the map '
(q) n (q + 20 i pl) .
p p

Example

psdO = psd_test(); T
m = map_driftpoly([0,0.5,2,1]); (
psdl = propagate(psd0,m,box="EQUAL"); e
show(psdl,file="psd0.ppm"); :::: mﬂ

o oo

map _driftsine — Sinusoidal drift map
Synopsis
MAP map_driftsine(FLT a, FLT k, FLT ¢);

Description

Returns the map
(q) . <q+ a sin(kp + gb) _
p p

Example

psd0 = psd_test();

m = map_driftsine(l, 2*pi, 0.1%pi);
psdl = propagate(psdO,m);
show(psdl,file="psd0.ppm") ;

21

map_hyperbolic — Hyperbolic map
Synopsis
MAP map_hyperbolic(FLT a);

Description

Returns the map

Example

psd0 = psd_test();

m = map_hyperbolic(2.0);

psdl = propagate(psdO,m,box="EQUAL") ;
show(psdl,file="psd0.ppm");

map_identity — Identity map
Synopsis
MAP map_identity();

Description

Returns the map

Example

psd0 = psd_test();

m = map_identity(Q);

psdl = propagate(psdO,m);
show(psdl,file="psd0.ppm") ;

22

map_kickl — Linear kick map
Synopsis
MAP map kickl(FLT k);

Description

Returns the map
q q
— .
(p> (p tk q>

Example

psd0 = psd_test();

m = map_kickl(1l);

psdl = propagate(psdO,m,box="EQUAL") ;
show(psdl,file="psd0.ppm");

map_kickpoly — Polynomial kick map
Synopsis
MAP map kickpoly(FLT[n] a);

Description

Returns the map
q q
H n Z .
(P) (p + 20 aid)

Example

psd0 = psd_test();
m = map_kickpoly([0,0.5,2,1]);
psdl = propagate(psdO,m,box="EQUAL") ;
show(psdl,file="psd0.ppm") ;
psdO.ppm

23

map _kicksine — Sinusoidal kick map
Synopsis
MAP map_kicksine(FLT a, FLT k, FLT ¢);

Description

Returns the map

(Z) ~ <p+a sig(k:q—l—qb> '

Example

psd0 = psd_test();

m = map_kicksine(l, 2x*pi, 0.1xpi);
psdl = propagate(psdO,m);
show(psdl,file="psd0.ppm");

map_poissonld — Solve 1D Poisson’s equation

Description

TODO

24

map_poisson — Poisson-type collective kick map
Synopsis
MAP map_poisson(PSD ¥, STR g, keywords);

Description

Returns the Poisson-type kick map given by the convolution of the Greens function g with the
spatial density

@ ~ <p+ [9(-) + qu\w-,p)dp} <q>) |

Example

psd = psd_test(); normalize(psd);

m = map_poisson(psd, "2*(0.5-step(q))");
psd = propagate(psd,m,box="EQUAL") ;
show(psd,file="psd.ppm") ;

map _rotate — Rotation map
Synopsis
MAP map_rotate(FLT «);

Description

Returns the map '
(1) (o) o) - (5)-

Example

210

psd0 = psd_test();

m = map_rotate(2*pi*0.2);

psdl = propagate(psdO,m);

show(psdl,file="psdO.ppm") ; I M

// |

-2.00e+00) M o \b\\
psdO.ppm

25

map_spacecharge — Spacecharge kick map

Synopsis

MAP map_spacecharge(PSD W, keywords);

Description

Returns the kick-map generated by the spacecharge fields of the phase-space density W.

Keywords
’ Keyword ‘ Type‘ Deﬁnﬂt‘ Unit ‘Ikﬁcﬁpﬁon
beamsize FLT 1|m Average transverse beamsize.
length FLT 1| m Length of the drift space.
energy FLT mec? | eV Total particle energy.
beamsize_factor | FLT 1.747 Factor to multiply beamsize with.
file STR File name to write field data to.
Example

psd0 = psd_test(weight=500e-12);

m = map_spacecharge (psdO,
beamsize=0.05,
file="field.dat");

psdl = propagate(psdO,m);

show(psdl,file="psdl.ppm");

=

f/

[
10 [
o alvd 508
AL
-~ ATV,
0 S
N /
\
i
= \
\
G s w1

field.png

maximum — Maximum of a PSD

Synopsis
FLT maximum(PSD V);

Description

Returns value of the largest sample of .

Return Value

Maximum of .

mkdir — Creates new directory

Synopsis
mkdir(STR dir);

Description

Creates new directory named dir in the current working directory.

26

‘MWM\V/\/F\\\

psdl.ppm

modify — Modify a PSD
Synopsis
modify(PSD ¥, STR fnc);

Description

Modify a PSD with the function f given in the string fnc in the following way

0 else

B(2) {f(\I/(z),z) z € suppV¥ .

In fnc the symbols psi, q, and p refer to the local value of the PSD, and the phase-space
coordinates (q,p) = z respectively. The expression fnc is evaluated using the library “GNU
libmatheval”. See its documentation for a list of all supported features.

Example

psd = psd_test();
modify(psd,"psi*(1+0.5%sin(2*pi*5*xq))");
show(psd,file="psd.ppm");

multiply — Multiply PSD with a constant
Synopsis
multiply(PSD W, FLT a);

Description

Multiplies the PSD ¥ with a constant factor

Uis aW.

Example

psd = psd_test(); normalize(psd);
print (integral (psd));
multiply(psd,3.2);
print(integral(psd));

>>> 9.9999999999998146e-01
>>> 3.1999999999999846e+00

27

noise — Add noise to PSD

Synopsis

noise(PSD W, FLT a, keywords);

Description

Scales all values of ¥ by a random value. If type is 0, then the values are scaled according to

where z;; € [—1, 1] is sampled from a uniform distribution. If type is 1, then a is interpreted
as the total number of particles and the values are scaled according to a Poisson distribution

\Ifz‘j — (1 + axij)\lfij

with a mean of the local expected value of the number of particles.

Keywords

’ Keyword ‘ Type ‘ Default ‘ Unit ‘ Description

seed FLT 0 seed value for the random number generator
type FLT 0 0: uniform noise, 1: Poisson noise
Example

psi = psd_test(Q);
noise(psi, 0.8);

show(psi, file="noise.ppm");

noise.ppm

28

normalize — Normalize integral of PSD
Synopsis
normalize(PSD V)

Description

Normalizes the integral of ¥ to unity

U= v/ [U(z)dz.

R2

Example

psd = psd_test();
print (integral(psd));
normalize(psd);

print (integral(psd));

>>> 4.0852578184938004e-01
>>> 9.9999999999998146e-01

plot — Save a grayscale image of a PSD
Synopsis
plot(PSD ¥, STR frname);

Description

Saves an image of the PSD W in the pgm format to the file fname. The image is not downsam-

pled, i.e. if the PSD has nexp = a and depth = b, the resulting image will have the dimensions
2(a+d) « 9(a+b)

Example

psd = psd_test(); r
plot(pad, "plot.pen) Ml

plot.pgm

29

print — Print objects

Synopsis

print(PSD/STR/FLT objo,...,PSD/STR/FLT o0bj,);

Description

Prints objects to standard output. If the object is of type PSD information about its tree-
structure is printed. For MAP type objects no output is produced.

Example

mystr = "Hello!";

myflt = 12;
myarr = [1,2,

3,5];

mypsd = psd_gauss(); normalize(mypsd);
mymap = map_kickl(2);

print ("mystr
print("myflt
print ("myarr
print ("mypsd
print ("mymap

>>> mystr is:
>>> myflt is:
>>> myarr is:
>>> mypsd is:
>>> Center:
>>> Width:
>>> Limits:
>>> Ref.Pt:
>>> Depth:
>>> nexp:

>>> Weight:
>>> TIpol:

>>> Topo::
>>> Leafs:
>>> Integrl:
>>>

>>> mymap is:

is: ", mystr);
is: ", myflt);
is: ", myarr);
is: ", mypsd);
is: ", mymap);

Hello!
1.2000000000000000e+01
1.0000000000000000e+00 2.0000000000000000e+00 3.0000000000000000e+00

0.000000e+00 0.000000e+00
8.000000e-01 8.000000e-01
-8.000000e-01 -8.000000e-01 8.000000e-01 8.000000e-01
0.000000e+00 0.000000e+00
7

2

1.000000e+00

2

0

7896

1.000000e+00

5.000000(

30

propagate — Propagate a PSD according to a map

Synopsis

PSD propagate(PSD W, MAP f, keywords);

Description

Executes a Perron-Frobenius step, i.e. returns the phase-space density ¥ o f~=1.

The box keyword determines how the bounding box of the new PSD is chosen. Possible values
are "KEEP" (new box is equal to the initial), "AUTO" (each axis is scaled independently in powers
of 2 to fit the new PSD), and "EQUAL" (both axes are scaled by the same power of 2 to fit the
new PSD).

The center keyword determines how the center point of the new PSD is chosen. Possible
values are "KEEP" (new center is equal to the inital), "AUTO" (new center is the center of the

minimum bounding box of the support of the new PSD).

nexp and depth choose the resoltution parameters of the new PSD. Setting nexp to 0 will keep
the value of the inital PSD. Setting depth to zero will keep the depth of the inital PSD plus

the log o of the largest scaling factor of the axes.

’ Keyword ‘ Type ‘ Default ‘ Unit ‘ Description

Keywords
center STR
box STR
nexp FLT
depth FLT
t FLT

"AUTQ"
"AUTOQ"
0
0
1

Method to determine the center point of the new tree.
Method to determine the width of the new tree.

New sample rate.

New recursion depth.

Independent variable.

31

psd_analytic — Initialize a PSD from analytic expression
Synopsis
PSD psd_analytic(STR str, keywords);

Description

Initialize a PSD from the analytic expression given in str. In str the symbols q and p are
used to refer to the phase-space coordinates. The expression is evaluated using library “GNU
libmatheval”. See its documentation for a list of all supported features.

Keywords
’ﬁKeyWDrd ‘ Type Deﬁnﬂt"Unﬁ;‘Ik%cﬂpﬁon
depth FLT 7 Refinement depth of the tree.
nexp FLT 2 logy(sample points / dimension).
weight FLT 1.0 Weight of the distribution.
limits FLT{4] | [-1,-1,1,1] bounding box limits [¢min Pmin » max > Pmax |-
interpolation | FLT 2 Interpolation method (nearest, linear, cubic).
topology FLT 0 Topology (R2, S x R, R! x S1, and 5?).
Example

psd = psd_analytic("abs(cos(2*pi*q)*cos(2*pi*p))
*(1-sqrt (g 2+p~2))");
show(psd,file="psd.ppm");

32

psd_ensemble — initialize a PSD from an particle ensemble
Synopsis
PSD psd_ensemble(STR file, keywords);

Description

Returns a PSD constructed from an particle distribution, read from the file file. file is expected
to contain phase-space coodinates in ASCII representation in the order ¢y, p1, ..., qn, py. Addi-
tional white-space (apart from that needed to separate the values) is allowed but not required.
The distribution is binned into nslices bins along the g-axis. The resulting PSD is of the form

U(q,p) = {(/)\(Q) Eula).o(@+80(P) \jsg 1(q)] < (o(q) + Ao)a

where &, , denotes the one-dimensional normal distribution with mean p and standard devi-
ation 0. A(q), u(q), and o(q) are functions interpolating the density, centroid, and standard
deviation in p respectively, where the data points are determined from the binned particles. The
distribution is truncated at (o(q) + Ao)a. The value of spread is added to the local standard
deviation.

If the type keyword is set to "astra" the file assumed to be a particle distribution file in the
format used by ASTRA. The weight of the resulting PSD is set to the total bunch charge.

Keywords
’ Keyword ‘ Type ‘ Default ‘ Unit ‘ Description ‘
nslices FLT 32 Number of slices.
cutoff FLT 3 a, cutoff in sigma.
spread FLT 0]eV Ao, Additional standard deviation
type STR "plain" Selects file format.
depth FLT 7 Refinement depth of the tree.
nexp FLT 2 log,(sample points / dimension).
weight FLT 1.0 Weight of the distribution.
limits FLT[4] | [-1,-1,1,1] bounding box limits [¢min s Pmin s Gmax s Pmax |-
interpolation | FLT 2 Interpolation method (nearest, linear, cubic).
topology FLT 0 Topology (R?, S' x R}, R! x S, and S2).

33

psd_gauss — initialize a Gaussian PSD

Synopsis

PSD psd_gauss(keywords);

Description

Returns the truncated bivariate Gaussian distribution

0
. {exp (=r/2)/(2m det¥) else

with r = 27X~z and the covariance matrix

VT >a

E — < 0—2 paqu) .
pogoy, 0,

Keywords
’ﬁKeyWQrd Type Deﬁuﬂt"Unﬁ;‘Ikﬁcﬁpﬁon

sigq FLT 0.2 | [q] 04, standard deviation in g.

sigp FLT 0.2 | [p] op, standard deviation in p.

correlation FLT 0 p, correlation parameter.

cutoff FLT 3 a, cutoff parameter.

depth FLT 7 Refinement depth of the tree.

nexp FLT 2 log,(sample points / dimension).

weight FLT 1.0 Weight of the distribution.

limits FLT[4] | [-1,-1,1,1] bounding box limits [¢min s Pmin s Gmax s Pmax |-

interpolation | FLT 2 Interpolation method (nearest, linear, cubic).

topology FLT 0 Topology (R?, S' x R, R! x S1, and S?).
Example

psd=psd_gauss(correlation=0.8,

sig_qg=1,
sig_p=2,
limits=[-5,-10,5,10]);

show(psd,file="psd.ppm") ;

34

psd_rectangle — initialize a rectangular PSD
Synopsis
PSD psd_rectangle(FLT[4] bbox, keywords);

Description

Returns a PSD with rectangular support given by bb0x = [Gumin, Pmin, maxs Pmax) -

Keywords
’ Keyword ‘ Type ‘ Default ‘ Unit ‘ Description
depth FLT 7 Refinement depth of the tree.
nexp FLT 2 log, (sample points / dimension).
weight FLT 1.0 Weight of the distribution.
limits FLT[4] | [-1,-1,1,1] bounding box limits [¢min s Pmin s Gmax s Pmax |-
interpolation | FLT 2 Interpolation method (nearest, linear, cubic).
topology FLT 0 Topology (R?, S x R} R! x S, and S?).
Example
110
psd=psd_rectangle([-0.1,-0.2,0.3,0.4]);
show(psd,file="psd.ppm") ;
psd.ppm

35

psd_test — initialize a test PSD
Synopsis
PSD psd_test(keywords);

Description

Returns a PSD with clear visual features for testing purposes.

Keywords
’ Keyword ‘ Type Deﬁnﬂt‘ Unit ‘Ikﬁcﬂpﬁon
depth FLT 7 Refinement depth of the tree.
nexp FLT 2 log, (sample points / dimension).
weight FLT 1.0 Weight of the distribution.
limits FLT[4] | [-1,-1,1,1] bounding box limits [¢min s Pmin s Gmax s Pmax |-
interpolation | FLT 2 Interpolation method (nearest, linear, cubic).
topology FLT 0 Topology (R?, S x R} R! x S, and S?).
Example

psd=psd_test () ;
show(psd,file="psd.ppm") ;

save — Save a PSD to a file
Synopsis
save(PSD W, STR file);

Description

Save PSD W in a lossless binary format to file. A PSD saved in this way can be restored using
the [Loadl function.

Example

psd = psd_test();
save(psd, "psd.dat");

36

show — Visualize PSD
Synopsis
show(PSD W);

Description

Start an interactive visualization of the phase-space density V.

If the file keyword is supplied, an image in PPM format is written to the specified file. PPM
images can be easily converted to more common formats with image manipulation programs
such as the ImageMagick suite or the GIMP.

] Key \ Function ‘
+—, T, —, 1 | Scroll the window
o Zoom out
P Zoom in
S Save a screenshot to test.ppm
u Unzoom
1 Toggle cell drawing
n Toggle how to draw negative numbers
g Toggle grid drawing
T Rescale colormap
q Exit
LMB Print value of PSD to stdout
RMB + drag | Zoom in to region (click lower left, release upper right)

Keywords

’ Keyword ‘ Type ‘ Default ‘ Unit ‘ Description ‘
’ file ‘ STR ‘ ‘ ‘ Write image in PPM format to a file. ‘

strcat — Concatenate strings
Synopsis
FLT strcat(STR a, STR b);

Description

Concatenates two strings a and b to a single string.

Return Value

Concatenated string ab.

Example

strcat("conc","atenated") ;

>>> ’concatenated’

37

strcmp — description
Synopsis
FLT stremp(STR a, STR b);

Description

Compares two strings.

Return Value

If the strings are equal 0 is returned. If a is less than b, a negative value is returned. If a is
greater than b, a positive value is returned.

Example

strcmp("test","test");
strcmp("test","tea");

>>> 0.0000000000000000e+00
>>> 1.8000000000000000e+01

strtod — Convert string to number
Synopsis
FLT strtod(STR s);

Description

Converts the string s containing a representation of a floating point number to a floating point
number object.

Return Value

Floating point number represented by s.

Example

strtod("1e-3");

>>> 1.0000000000000000e-03

38

transfer4d — Propagate a 4D transfer matrix
Synopsis
FLT[16] transferdd(FLT[16] R, FLT I, FLT ¢;, FLT ko, FLT ky);

Description

Calculates the propagated 4-dimensional transfer matrix

F(dg, ko) if ¢p #0
(

B(l,ky) else and ko # 0 (6)
Q(l, k1) else and ky # 0 ’
D(l) else and [# 0
where
1 0 00
tan kel 1 0 O
0 0 0 1
and
C S/ ko 0 (1-0)/k
| =Sk C 0 S
Blbk) =1 _g" _(1—C)/ky 1 —(a—S)/ko (®)
0 0 0 1

with a = k01, S = sin(a), C' = cos(a)

C S/la] 0 0
alS C 00
0 0 01

O O = o~
O = OO
_0 O O

Return Value

Array of size 16 containing the new transfer matrix.

39

variance — Calculate covariance matrix
Synopsis
FLT[4] variance(PSD W);

Description

Calcuates the covariance matrix of U

/R () <§q ggg) az.

Array of size 4 containing the covariance matrix in row-major order.

Return Value

Example

psi = psd_test();
variance(psi) ;

>>> [4.608020e-02, 4.922162e-03, 4.922162e-03, 3.410189e-02]

40

who — List all defined variables
Synopsis
who();

Description

List all defined variables together with their type and value.

Example

mystr = "Hello!";

myflt = 12;

myarr = [1,2,3,5];

mypsd = psd_gauss(); normalize(mypsd) ;
mymap = map_kickl(2);

who () ;

>>> myarr = [1.000000e+00, 2.000000e+00, 3.000000e+00, 5.000000e+00] ;
>>> myflt = 1.2000000000000000e+01;

>>> mymap ;

>>> mypsd =

>>> Center: 0.000000e+00 0.000000e+00

>>> Width: 8.000000e-01 8.000000e-01

>>> Limits: -8.000000e-01 -8.000000e-01 8.000000e-01 8.000000e-01
>>> Ref.Pt: 0.000000e+00 0.000000e+00

>>> Depth: 7

>>> nexp: 2
>>> Weight: 1.000000e+00
>>> TIpol: 2
>>> Topo:: 0

>>> Leafs: 7896

>>> Integrl: 1.000000e+00
>>>

>>> mystr = ’Hello!’;

write_ensemble — Write ensemble to file
Synopsis
write_ensemble(PSD W, STR file, FLT npts);

Description

Write an ensemble of npts points distributed according to ¥ to file.

41

write_grid — Write grid to file

Synopsis

write_grid(PSD W, STR file, keywords);

Description

Writes values of the PSD along an equidistant grid to file.

Keywords

’ Keyword ‘ Type ‘ Default ‘ Unit ‘ Description
npts FLT|2] [128,128] Number of sample points in q and p respectively.
limits FLT[4] | Limits of ¥ Sampling area [Gmin, Pmin, @mazs Pmaz)-

write_localmoments — Write moments of marginal distribution to file

Synopsis

write_localmoments(PSD ¥, STR fname, FLT i);

Description

Writes the local projected density p, centroid u, and variance o2 of ¥ along the dimension i to
fname, where

pls) = [¥E)d
i) = [9z
o) = [) =) d

(12)
(13)

(14)
(15)

and z; is the remaining phase-space coordinate. Indexing of the dimension starts at 0, so that

zo = q and z; = p.

42

write_projection — Write projection to file
Synopsis
write_projection(PSD W, STR file, FLT azes);

Description

Write the projection along the axes specified by axes to file. axes is cast into an integer and
interpreted as a bitfield; if the i-th bit is set, the i-th axis will be projected along.

’ ares \ Effect ‘

0 =002 | No projection; the 2D PSD will be written to the file.
1 =015 | Projection along q.

2 = 105 | Projection along p.

3 = 115 | Projection along p and ¢. Currently not supported.

Example

0s \ (\ '\
psd = psd_test(); g w W‘
write_projection(psd,"proj_1.dat",1);) \ /
write_projection(psd,"proj_2.dat",2);

proj_1.png proj_2.png

43

	Introduction
	Installation
	Command Language
	Comments
	Data types
	Variables
	Arithmetic
	Keyword Arguments
	Control Flow

	Usage
	Initializing PSDs
	Propagating PSDs
	Generating Output

	Application to Beam Dynamics
	Reference
	average – Function average from discrete values
	centroid – Calculate PSD centroid
	charge – Charge (or Weight) of a PSD
	chdir – Change working directory
	chicanecoef – Taylor coefficients of C-shape chicane
	defined – Check whether symbol is defined
	do – Execute commands multiple times
	eval – Evaluate commands in a string
	format – Format numbers into a string
	for – Loop over array
	getcwd – Name of current working directory
	getenv – Read environment variable
	if – Conditional execution
	include – Evaluate commands in a file
	integral – Calculate expectation values
	linspace – Create array of equally spaced values
	load – Load a PSD from a file
	map_analytic – Map defined by analytic expressions
	map_cavity – Cavity map
	map_chicanec – C-shape Chicane map
	map_compose – Compose multiple maps
	map_csr – CSR kick map
	map_driftl – Linear drift map
	map_driftpoly – Polynomial drift map
	map_driftsine – Sinusoidal drift map
	map_hyperbolic – Hyperbolic map
	map_identity – Identity map
	map_kickl – Linear kick map
	map_kickpoly – Polynomial kick map
	map_kicksine – Sinusoidal kick map
	map_poisson1d – Solve 1D Poisson's equation
	map_poisson – Poisson-type collective kick map
	map_rotate – Rotation map
	map_spacecharge – Spacecharge kick map
	maximum – Maximum of a PSD
	mkdir – Creates new directory
	modify – Modify a PSD
	multiply – Multiply PSD with a constant
	noise – Add noise to PSD
	normalize – Normalize integral of PSD
	plot – Save a grayscale image of a PSD
	print – Print objects
	propagate – Propagate a PSD according to a map
	psd_analytic – Initialize a PSD from analytic expression
	psd_ensemble – initialize a PSD from an particle ensemble
	psd_gauss – initialize a Gaussian PSD
	psd_rectangle – initialize a rectangular PSD
	psd_test – initialize a test PSD
	save – Save a PSD to a file
	show – Visualize PSD
	strcat – Concatenate strings
	strcmp – description
	strtod – Convert string to number
	transfer4d – Propagate a 4D transfer matrix
	variance – Calculate covariance matrix
	who – List all defined variables
	write_ensemble – Write ensemble to file
	write_grid – Write grid to file
	write_localmoments – Write moments of marginal distribution to file
	write_projection – Write projection to file

